Systemy uczgace (sie) —
kto jest uczniem, kto nauczycielem?

Dominik Slezak



Wprowadzenie

* Obecne metody uczenia sie z danych (ang. machine learning; popularny skrét myslowy to metody
,Al/ML”) sg bardzo skuteczne, lecz nie mozna ich pozostawia¢ samym sobie. Potrzebujg zbioréw
treningowych, sugestii co do priorytetdéw w procesie uczenia, weryfikacji, czy tworzone modele sg
zgodne ze zdrowym rozsadkiem. Z drugiej strony, mozemy sie od nich oczywiscie wiele nauczyc.

* Poruszamy wybrane aspekty interakcji na linii ,,systemy Al/ML — ich uzytkownicy”. Omawiamy, w jakim
sensie dziatanie metod Al/ML moze pogtebi¢ naszg wiedze o danych, a z drugiej strony — jak
wykorzystywaé naszg wiedze do optymalizacji dziatania tych metod. Poruszamy kwestie ergonomii
procesow wymiany informacji, w tym koniecznos¢ zapewnienia predkosci i intuicyjnosci obliczen.

* Koncentrujemy sie w szczegdlnosci na paru podejsciach wywodzacych sie z teorii zbioréw przyblizonych
i obliczen granularnych, gdzie duzg wage przywigzuje sie do uproszczonych — a przez to zrozumiatych i
efektywnych — reprezentacji wiedzy, danych, a takze proceséw uczenia sie z danych.
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CHALLENGES

Labelin
the Loop

QUALITY

"No more garbage data" - models
are only as good as the provided
data

Maintaining model performance
through time

Better / faster / cheaper data
labelling

EEl

BRIGHTBOX

EXPLAINABILITY

Explainable models increase the
quality of decision-making

Understand how data quality
affects the prediction models

SCALABILITY

Implementing Al/ML where such
a possibility was throttled

by processing speed requirements
or data scale

Enabling machine learning
scalability for big data and/or big
data flows
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There is still a lot to be done...

* Explaining to humans why Al/ML models... are not certain
* Explaining to humans why Al/ML models... make mistakes

* Explaining to Al/ML models what humans want from them



Explaining why Al/ML models make mistakes

(examples of so-called diagnostic rules)

* IF there were no similar objects in the training data set, THEN the
mistake is most likely because the model is not ready for such cases

* (but maybe it doesn’t need to?)

* |[F mistakes happen quite often for similar objects in the training
data set, THEN the model is not sufficiently tuned for such cases

e (but maybe it doesn’t need to?)

* |F there was a single (or a few) similar object and there was no
mistake, THEN maybe there was something wrong with that object?

* (maybe it was incorrectly labeled?)
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But how to select ,,similar objects”?

(one of possible answers: using ensembles of rough-set reducts)

* IF there were no similar objects in the training data set, THEN the
mistake is most likely because the model is not ready for such cases

* (but maybe it doesn’t need to?)

* |IF mistakes happen quite often for similar objects in the training
data set, THEN the model is not sufficiently tuned for such cases

e (but maybe it doesn’t need to?)

* |F there was a single (or a few) similar object and there was no
mistake, THEN maybe there was something wrong with that object?

* (maybe it was incorrectly labeled?)
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Explaining why Al/ML models make mistakes

(models may make mistakes because of the data quality!)

* IF there were no similar objects in the training data set, THEN the
mistake is most likely because the model is not ready for such cases

* (but maybe it doesn’t need to?)

* |[F mistakes happen quite often for similar objects in the training
data set, THEN the model is not sufficiently tuned for such cases

e (but maybe it doesn’t need to?)

* |F there was a single (or a few) similar object and there was no
mistake, THEN maybe there was something wrong with that object?

* (maybe it was incorrectly labeled?)




What if the data is not good enough?

* Al/ML algorithms require the training data
 What if there are no (sufficient amount of) cases with appropriate labels?

* Could we ask ,the crowd” for help?
* Yes - unless... the labeling process requires highly specialized knowledge...

* Active Learning

,is a special case of machine learning in which a learning algorithm is able to
interactively query the user (or some other information source) to obtain the
desired outputs at new data points.”



Labelin
the Loop

QUALITY

"No more garbage data" - models
are only as good as the provided
data

Maintaining model performance
through time

Better / faster / cheaper data
labelling

CHALLENGES

EEl

BRIGHTBOX

EXPLAINABILITY

Explainable models increase the
quality of decision-making

Understand how data quality
affects the prediction models

SCALABILITY

Implementing Al/ML where such
a possibility was throttled

by processing speed requirements
or data scale

Enabling machine learning
scalability for big data and/or big
data flows




LITL (Label In The Loop)

registering/analyzing feedback
from subject matter experts
continuous identification

VISUAL PRESENTATION of the most valuable data
OF DATA EXAMPLES examples to be labeled

distributing data examples
among subject matter experts

Al/ML ALGORITHMS

DATA REPOSITORY



But it needs to be fast!!

interactive data labeling
interactive feature selection
interactive ...
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Database

Petabytes

Summary
Database

ap M

Gigabytes

Traditional Query Execution:

long time to do computations
lots of disk/memory/processing
resources required

hard to manage in data lake

/ data cloud environments

Querying on Data Summaries:

orders of magnitude faster
(original operations replaced by
fast summary transformations)

far less resources consumed
original data remaining in-place

)

Query Result

Approximate
Query Result
(accurate
enough from
business
perspective)
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Abstraci—We continee our rescarch on utilizing  histosran-
hased dala summaries i approximate dervation of mutwal
information scores e large relationsl dets seis, Oor methodolegy
of creating, storimg wmd wsing summurcies has been desisroed
for the purpose of developing an approximate database engine
that i= currently deploved commercially in the area of cybers
security data amalytics. However, a similar idea of approximate
data processing operations can be considered also in other fields.
including machine learning wherehy heoristic calealations ane
o cemponent of oy metheds, o this paper. we fcous on
ivestigation of ene possible source of inaccuracy of our previ-
ously proposed approach to approximating mutmal information
- that is, neglecting a kind of column domain drift during
distributed summary-based computations. We illusirate it nsing
an artificially ereafed benchmark dada set and we discoss how
o cope this particular challenge in the fwture,

Indey Ferms—Approximate Data Processing, Granulaied Data
Summaries, Approximate Muoteal Information

The considered engine 15 designed to perform on petabyles
of the summarnzad data. In |1], one can find empirical com-
panson of the speed of our stvle of approximate calewlations
versus state-of-the-art methods of scaling by means of adding
computational resources. In [2], we reported the current major
commercial deployment of our engine in the fiekd of onhine
cyber-security. whereby ad-hoc analytical queries need to
be executed against data sets containing detailed event logs
growing with intensity of over 3(K} hillions of new rows per
month. In both works, we emphasized that our ultimate goal
is [0 integrate the proposed methodology with aloremeniioned
state-of-the-art solutions, so 1t is possible to work with gran
wlated summarnes representing pairwise disjmnt meces of the
data in a fully parallelVdistnibuted environment.
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Labelin
the Loop

QUALITY

"No more garbage data" - models
are only as good as the provided
data

Maintaining model performance
through time

Better / faster / cheaper data
labelling

EEl

BRIGHTBOX

SMALL

B paTA

EXPLAINABILITY

Explainable models increase the
quality of decision-making

Understand how data quality
affects the prediction models

SCALABILITY B

Implementing Al/ML where such
a possibility was throttled

by processing speed requirements
or data scale

Enabling machine learning
scalability for big data and/or big
data flows




Dziekuje!
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