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Motivations
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• Data is in motion

• We need working models asap

• Limited resources

• Possible probabilty distribution shift

• New tasks (or new classes) should be learned
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Bing Liu testował na drodze autonomiczny samochód, gdy nagle coś poszło nie tak. Pojazd działał płynnie, aż 
dotarł do skrzyżowania i się zatrzymał. Liu i inni pasażerowie byli zaskoczeni. Droga, na której się znajdowali, była 
pusta, bez pieszych i innych samochodów w zasięgu wzroku. 
"Rozejrzeliśmy się, nie zauważyliśmy nic niepokojącego" - mówi Liu, informatyk z Uniwersytetu Illinois w Chicago.

Zdezorientowani inżynierowie przejęli kontrolę nad pojazdem i wrócili do laboratorium, aby przeanalizować 
podróż. Ustalili, że samochód został zatrzymany przez kamyk na drodze. Nie było to coś, co człowiek by zauważył, 
ale kiedy zostało zarejestrowane przez samochód jako nieznany obiekt - coś, z czym system sztucznej inteligencji 
(AI) prowadzący samochód nie spotkał się wcześniej. 
Problem nie dotyczył algorytmu sztucznej inteligencji jako takiego - działał on zgodnie z protokołem 
bezpieczeństwa, zatrzymując się przed nieznanym obiektem. Problem polegał na tym, że gdy po zakończeniu 
uczenia systemu, który potrafił rozróżniać między czystą drogą a przeszkodą, system ten nie mógł nauczyć się 
niczego więcej. Kiedy napotkał coś, co nie było częścią jego danych treningowych, takich jak kamyk lub nawet 
ciemna plama na drodze, nie wiedział, jak zareagować.

Ludzie mogą opierać się na tym, czego się nauczyli i dostosowywać się do zmian zachodzących w ich otoczeniu; 
większość systemów AI obraca się w zakresie tego, co już wie.

Neil Savage, Learning over a lifetime, https://www.nature.com/articles/d41586-022-01962-y, Nature, 20 July 2022



How can we improve AI efficiency, scalability and adaptability?

Hence making it sustainable in the long term

                                    Vincenzo Lomonaco, University of Pisa & ContinualAI
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https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/well-architected-machine-

learning-lifecycle.html

Typical ML lifecycle

Model monitoring system 

ensures your model is 

maintaining a desired level of 

performance.



Possible scenarios
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• The typical machine learning task is isolated learning because it 
does not consider any other related information or the 
previously learned knowledge. 

• The learning environments are typically static and closed. 

• Human never learns in isolation or from scratch. Human always 
retains the knowledge learned in the past and uses it to help 
future learning and problem solving. 
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• Online learning (stationary data stream)

• Learning from nonstationary data streams (concept drift), 
somethimes can be considered as domain adaptation 

• Task incremental learning

• Domain incremental learning

• Class incremental learning

Model for the 

same task

Model for the 

diffrent tasks
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• Online learning (stationary data stream)

• Learning from nonstationary data streams (concept drift), 
somethimes can be considered as domain adaptation 

• Task incremental learning

• Domain incremental learning

• Class incremental learning

Model for the 
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Model for the 

diffrent tasks
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Online learning (stationary data streams)

• The data distribution is stationary.

• The goal is to build a model as quickly as possible to use it and 
simultaneously improve it when new data arrives.

• This group relates to the family of algorithms that continuously update the 
classifier parameters while processing the incoming data. 
• Each object must be processed at least once in the course of training.

• Limited resources. 

• The training process can be paused at any time, and its accuracy should not be 
lower than that of a classifier trained on batch data collected up to the given time.

P. Domingos, G. Hulten, A general framework for mining massive data streams, Journal of Computational and Graphical 
Statistics 12,  2003, 945–949.
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Learning from nonstationary data streams (concept drift), sometimes can 
be considered as domain adaptation 

• The data distribution is nonstationary.

• The goal is to build a model using data 
from current distribution and update it 
taking into consideration that concept 
drift may appear.

• Forgetting is our friend in this case☺

15
Krawczyk B. et al., Ensemble learning for data stream analysis: A survey, Information Fusion, 2017



Should we react to the virtual concept drift

•Olivera et al.  noted that although virtual concept drift 
does not affect the change in decision boundaries and has 
not been the focus of much research, it is important to 
note that it can also affect the usefulness of learned 
decision boundaries by classifiers, e.g., for 
unrepresentative learning sets used to build a classifier. 

• Therefore, the maintained models need to be updated 
regardless of the occurring concept drift type.

16
G. Oliveira et al., Tackling virtual and real concept drifts: An adaptive gaussian mixture model approach, 2021.



If we require the learner to master new knowledge (be able to 
solve a new task), can we afford to train the model from scratch?

Shouldn't we look for learning methods that allow us to add new 
knowledge to solve a new task on the one hand, but also not to 
forget what the model has learned so far?

17



Just how much does it cost to train a model? 

Costs of training differently sized BERT models on the Wikipedia and Book corpora 
(15 GB):

$2.5k - $50k (110 million parameter model) 

$10k - $200k (340 million parameter model) 

$80k - $1.6m (1.5 billion parameter model)

Training costs can vary drastically due to different technical parameters, climbing 
up to US$1.3 million for a single run when training Google’s 11 billion 
parameter Text-to-Text Transfer Transformer (T5) neural network model variant. A 
project that might require several runs could see total training costs hit a jaw-
dropping US$10 million.

Or Sharir et al., The cost of training NLP models a concise overview, https://arxiv.org/pdf/2004.08900.pdf
18

GPT3 175 bilion parameters.

GPT4 is based on eight models with 220 

billion parameters each, for a total of 

about 1.76 trillion parameters, connected 

by a Mixture of Experts (MoE).

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://syncedreview.com/2019/11/07/google-t5-explores-the-limits-of-transfer-learning/


We are not looking for incremental improvements in state-of-the-
art AI and neural networks, but rather paradigm-changing 
approaches to machine learning that will enable systems to 
continuously improve based on experience. 

Hava Siegelmann, 2018 
Professor of Computer Science, and Brain Sciences, University of Massachusetts, Amherst
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• Online learning (stationary data stream)

• Learning from nonstationary data streams (concept drift), 
somethimes can be considered as domain adaptation 

• Task incremental learning

• Domain incremental learning

• Class incremental learning

Model for the 

same task

Model for the 

diffrent tasks
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21
Example given by Bartosz Krawczyk, RIT



Task incremental learning

• Models are always informed about which task needs to be performed. 

• Since task identity is always provided, i.e., we train models with task-
specific components. 

• A typical network architecture used in this scenario has a “multi-headed” 
output layer, meaning that each task has its own output units but the rest 
of the network is (potentially) shared among tasks.

Gido M. van de Ven and Andreas S. Tolias, Three scenarios for continual learning, https://arxiv.org/abs/1904.07734
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Domain incremental learning

• The task identity is not available at test time. 

• Models however only need to solve the task at hand; they are not 
required to infer which task it is.  

• A relevant real-world example is an agent who needs to learn to survive in 
different environments, without the need to explicitly identify the 
environment it is confronted with.
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Class incremental learning

Models must be able to both solve each task seen so far and infer which 
task they are presented with. 

It includes the common real-world problem of incrementally learning new 
classes of objects.

24



Data incremental learning

Each block is a batch of data

25



• Online learning (stationary data stream)

• Learning from nonstationary data streams (concept drift), 
somethimes can be considered as domain adaptation 

• Task incremental learning

• Domain incremental learning

• Class incremental learning

Model for the 

same task

Model for the 

diffrent tasks
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WHAT ARE THE GAPS?



Continual learning methods for stationary data (task/class incremental 

learning) focus on knowledge retention.

They tackle catastrophic forgetting and are unable to efficiently handle concept drifts.

Algorithms for non-stationary data are designed around change adaptation.

They focus on concept drifts. But do not consider catastrophic forgetting explicitly.

27
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Learning new classes, retaining previous knowledge and adapting to concept drifts, illustrated by the example of a binary 
recommendation system.

The lack of holistic solutions!

Korycki L., Krawczyk B., Class-Incremental Experience Replay for Continual Learning under Concept Drift, CVPR 2021



The described  scenarios assume that the data arrives in a sequential 
manner, and we upgrade model using incoming examples.

But the data may be corrected, or deleted.

29
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Motivations:
● privacy (e.g., GDPR -> right to be forgotten), 
● fairness (e.g., bias removal), 
● continual learning (data upgrading or removal)

How to deal with this scenario?
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Machine unlearning

Removing the influence of a specified subset of training data from a 
machine learning model is an important challenge.

32

Yinzhi Cao and Junfeng Yang (2015), Towards Making Systems Forget with Machine Unlearning, IEEE Symposium on 

Security and Privacy

Lucas Bourtoule et al. (2021), Machine Unlearning, IEEE Symposium on Security and Privacy

Mercuri S. et al., An Introduction to Machine Unlearning, https://arxiv.org/abs/2209.00939

https://ieeexplore.ieee.org/author/37088947646


Lifelong ML definition and objectives
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Lifelong machine learning aims to imitate the 
human learning process and capability

TASK#1

TASK#2

TASK#3

TASK#N

34



• Lifelong ML learns continually, retains the knowledge learned in 
the past, and uses the accumulated knowledge to help future 
learning and problem solving. 

• A large number of labeled training examples is not necessary. 

• In many domains, no training data is needed at all because they 
may already be covered by some other/past domains and such 
similar past domains can be automatically discovered. 

35



Lifelong ML  is a continuous learning process. 

At any point in time, the learner has performed a sequence of N tasks, T1, 
T2, … , TN . 

These (previous) tasks have their corresponding datasets D1, D2, …, DN . 

The tasks can be of different types and from different domains. 

When faced with the TN+1 (new or current) task with its data DN+1, the 
learner can leverage the past knowledge in the knowledge base (KB) to help 
learn TN+1 . 

36



The task may be given or discovered by the system itself. 

The objective of LL is usually to optimize the performance of the new task 
TN+1, but it can optimize any task by treating the rest of the tasks as the 
previous tasks. 

KB maintains the knowledge learned and accumulated from learning the 
previous tasks. 

37



Ideally, an lifelong learner should also be able to: 

• learn and function in the open environment, where it not only can apply 
the learned model or knowledge to solve problems but also discover new 
tasks to be learned, 

• learn to improve the model performance in the application or testing of 
the learned model. 

38



The definition indicates five key characteristics of lifelong ML: 

• continuous learning process, 

• knowledge accumulation and maintenance, 

• the ability to use the accumulated past knowledge to help future 
learning, 

• the ability to discover new tasks, 

• the ability to learn while working or to learn on the job. 

39



Additionally, we have to consider:

• No access (or very limited) to previously encountered data. 

• Limited resources (computational and memory resources) 

• Incremental development of ever more complex knowledge and skills

40



Independent tasks

Each task can be learned independently, although due to their similarities 
and sharing of some latent structures or knowledge, learning Ti can leverage 
the knowledge gained from learning previous tasks. 

41



Dependent tasks

Each task Ti has some dependence on some other tasks, e.g., in open-world 
learning (class incremental learning) each new supervised learning task adds 
a new class to the previous classification problem, and needs to build a new 
multi-class classifier that is able to classify data from all previous and the 
current classes. 

42



• The tasks do not have to be from the same domain. 

• The shift to the new task can happen abruptly or gradually, and 
the tasks and their data do not have to be provided by some 
external systems or human users. 
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Techniques we may use
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•Multi-task learning (MTL) learns multiple related tasks
simultaneously, aiming at achieving a better performance by
using the relevant information shared by multiple tasks

• Online multi-task learning aims to learn the tasks sequentially
and accumulate knowledge over time and leverage the
knowledge to help subsequent learn ing (or to improve some
previous learning task).

• Online MTL is thus lifelong ML.

45



• Transfer learning usually involves two domains: a source domain 
and a target domain. 

• The goal of transfer learning is to use the labeled data in the 
source domain to help learning in the target domain.

• Although there can be more than one source domain, in almost 
all existing research only one source domain is used. 

• The source domain normally has a large amount of labeled 
training data while the target domain has little or no labeled 
training data. 
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Transfer Learning: Learner 
can solve task 2 because it 
has learned task 1, but we do 
not care whether it can still 
do task 1.

47

Lifelong ML: Even though 
learner has learned task 2, 
but it does not forget task 1.

Lifelong ML vs. Transfer Learning



The effectiveness of TL is not always guaranteed, unless its basic 
assumptions are satisfied: 

1) the learning tasks in the two domains are related/similar; 

2) the source and target domain data distributions are not too different; 

3) a suitable model can be applied to both domains. 

48
Wen Zhang et al., A Survey on Negative Transfer, IEEET NNLS, 2021

Violations of these assumptions may 

lead to negative transfer (NT), i.e., 

introducing source domain 

data/knowledge undesirably decreases 

the learning performance in the target 

domain



3 layers, 50 neurons each (example given by Hung-yi Lee, NTU)

 

This is “0”.

Task 1

This is “0”.

Task 2

90%

97%

80%What’s going on?
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Learning 
Task 1

Learning 
Task 2

98%

89%
The network has 
enough capacity 

to learn both 
tasks.
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• Using all the data for training – computational costly.

•Memorizing all data – breaking assumption on limited storage 
size.

•Multi-task training can be considered as the upper bound of 
lifelong ML.
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Training model for each task – cannonical approach, which 
requires model for each taks.

Drawbacks:

• Limited memory for memorizing all the models

• Knowledge cannot transfer across different tasks

52



• Catastrophic forgetting or catastrophic interference was first 
recognized by McCloskey and Cohen in 1989

• They found that, when training on new tasks or categories, a 
neural network tends to forget the information learned in the 
previous trained tasks. 

•Without fixing this problem, a single neural network will not be 
able to adapt itself to an lifelong ML scenario, because it forgets 
the existing information/knowledge when it learns new task.

53



• This was also referred to as the stability-plasticity dilemma.

• On the one hand, if a model is too stable, it will not be able to 
consume new information from the future training data. 

• On the other hand, a model with sufficient plasticity suffers from 
large weight changes and forgets previously learned 
representation.

54



Is it typical for ML only – how it looks in humans?

Mozer M., C. et al., Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory, NIPS 2009 55

ISI (intersession interval) -  time between training 

sessions

RI (retention time) – lag between session and test



Li and Hoiem characterized three sets of parameters in a typical approach: 

56

Zhizhong Li, Derek Hoiem, Learning without Forgetting, IEEE T PAMI, 2017



Feature extraction

Both 𝜃𝑠 and 𝜃𝑜 remain the same while the outputs of some layers are used 
as features for training 𝜃𝑛 for a new task.
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Fine-tuning

• 𝜃𝑠 and 𝜃𝑛 are optimized and updated for the new task while 𝜃𝑜 remain 
fixed. 

• To prevent large shift in 𝜃𝑠 , a low learning rate is typically applied. 

• Also, for the similar purpose, the network can be duplicated and fine-
tuned for each new task, leading to networks for N tasks. 

• Some authors propose to fine-tune parts of 𝜃𝑠, e.g. top layers (a kind of 
the trade off between fine-tuning and feature extraction).
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Join training: 

• All parameters 𝜃𝑠, 𝜃𝑜, and 𝜃𝑛 are jointly optimized accross all tasks, that 
requires storing all training data of all tasks.

• Multi-taks learning typically takes this approach. 

59



Li and Hoiem also presented the following summary
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Selected methods
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Taxonomy☺

62

Lesort et al.,  Continual learning for 

robotics: Definition, framework, learning 

strategies, opportunities and challenges, 

Information Fusion, 2020

Matthias De Lange  eta l., A Continual 

Learning Survey: Defying Forgetting in 

Classification Tasks, IEEE T PAMI, 2021



Progressive neural networks

were proposed by Rusu et al. to 
explicitly tackle catastrophic 
forgetting for the problem of LL. 
The idea is to keep a pool of 
pretrained models as 
knowledge, and use lateral 
connections between them to 
adapt to the new task. 
https://arxiv.org/abs/1606.04671

input

Task 1

input

Task 2

input

Task 3

A straightforward way to do train model for lifelong ML is to explicitly 

define a different models per task.
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• We propose a novel approach based on adding new layers on top of 
existing ones to enable the forward transfer of knowledge and adapting 
previously learned representations. 

• We employ a method of determining the most similar tasks for selecting 
the best location in our network to add new nodes with trainable 
parameters.

•  This approach allows for creating a tree-like model, where each node is a 
set of neural network parameters dedicated to a specific task.

J. Kozal, M.Woźniak, Increasing Depth of Neural Networks for Life-long Learning, Information Fusion 2023
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Conducted experiments suggest that the introduced 

algorithm obtained good results, especially for datasets 

with distribution close to real images. In a more 

challenging setup with a single computer vision dataset 

as a separate task, our method outperforms Experience 

Replay. 65



• Several recent papers use similar strategy, with different approaches for 
selecting the parts of the network for each task1. 

• Context-dependent Gating randomly assigns which nodes participate in 
each task2. 

• Other approaches use evolutionary algorithms or gradient descent to 
learn which units to employ for each task. 

These methods could be used only in the task incremental learning 
scenario, as task identity is required to select the correct task-specific 
components.

 

1. Shipeng Yan et al., Dynamically Expandable Representation for Class Incremental Learning, CVPR 2021

2.Joan Serra et al., Overcoming Catastrophic Forgetting with Hard Attention to the Task, ICML 2018
66



Regularized Optimization is an alternative strategy. 

It still preferentially train a different part of the network for each task, but to 
always use the entire network for execution. 

It estimates (for all parameters of the network) how important they are for 
the previously learned tasks and penalize future changes to them 
accordingly (i.e., learning is slowed down for parts of the network important 
for previous tasks).

Kirkpatrick et al. proposed Elastic Weight Consolidation (EWC) https://arxiv.org/abs/1612.00796

Gradient Episodic Memory (GEM) https://arxiv.org/abs/1706.08840

Synaptic Intelligence (SI) https://arxiv.org/abs/1703.04200
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Low error for task 1

Low error for task 2

𝜽𝟎

𝜽𝒃
𝜽∗?

Plasticity is the main cause of 

catastrophic forgetting since the 

weights learned in the previous tasks 

can be easily modified given a new 

task. 

More precisely, plasticity of weights 

that are closely related to previous 

tasks is more prone to catastrophic 

forgetting than plasticity of weights 

that are loosely connected to previous 

tasks. 

EWC was inspired by human brain in which synaptic consolidation enables 

continual learning by reducing the plasticity of synapses related to previous 

learned tasks. It mitigates catastrophic forgetting in neural networks. 
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𝐿′ 𝜽 = 𝐿 𝜽 + 𝜆 𝑖 𝑏𝑖 𝜃𝑖 − 𝜃𝑖𝑏 2
Loss for current task

Loss to be 

optimized

How important 

this parameter is 

Parameters learned 

from previous task

𝜽𝒃 is the model learned from the previous tasks.

Each parameter 𝜃𝑖𝑏 has a “guard” 𝑏𝑖

Parameters to be 

learning

Some parameters are important to the previous tasks, then 

change the unimportant parameters.

69



𝐿′ 𝜽 = 𝐿 𝜽 + 𝜆 𝑖 𝑏𝑖 𝜃𝑖 − 𝜃𝑖𝑏 2

Some parameters are important to the previous tasks, then 

change the unimportant parameters.

𝜽𝒃 is the model learned from the previous tasks.

Each parameter 𝜃𝑖𝑏 has a “guard” 𝑏𝑖

If 𝑏𝑖 = 0, there is no constraint on 𝜃𝑖
If 𝑏𝑖 = ∞, 𝜃𝑖 would always be equal to 𝜃𝑖𝑏

𝜽 should be close to 𝜽𝒃 in certain directions.

Catastrophic Forgetting

Intransigence
70



Task 1

𝜃2
𝜽𝟎

𝜽𝒃 𝜃1

𝜃1

𝜃2

𝜃1𝑏

𝜃2𝑏

can be changed ☺ 𝑏1 is small

𝑏2 is large 

don’t touch it!
Each parameter has a 

“guard” 𝑏𝑖
Example given by Hung-yi Lee, NTU
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Task 1 Task 2

𝑏1 is small, while 𝑏2 is large. 

𝜃1 𝜃1

𝜃2 𝜃2
𝜽𝟎

𝜽𝒃 𝜽𝒃

𝜽∗
𝜽∗𝜃∗

(We can modify 𝜃1, but do not change 𝜃2 .) 72



Intransigence

MNIST permutation https://arxiv.org/abs/1612.00796

𝑏𝑖 = 0𝑏𝑖 = 1
𝑏𝑖 represents 

importance

73



https://arxiv.org/abs/

1706.08840

Task 1 Task 2𝜽𝟎

𝜽𝒃 𝜽𝒃

Gradient Episodic Memory (GEM)

: negative gradient of current task

: negative gradient of previous task

: update direction

𝒈
𝒈′

𝒈′ ∙ 𝒈𝒃 ≥ 0𝒈𝒃

as close as 

possible

Need the data from 

the previous tasks

𝒈𝒃
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Learning without forgetting optimizes shared parameters and 
parameters for new task during new task learning with constrains that 
the predictions on the new task examples using old parameters and 
shared parameters do not shift too much.

75



Replay is an alternative strategy for combating catastrophic forgetting.

• It is to complement the training data for each new task to be learned with 
“pseudo-data” representative of the previous tasks. 

• It takes the input data of the current task, label them using the model 
trained on the previous tasks, and use the resulting input-target pairs as 
pseudo-data.

• Disadvantage: possible memory constraints or privacy concerns.

76



Shin et al. proposed Deep Generative Replay - a continual learning method 
using replayed examples from a generative model without referring to the 
actual data of past tasks. 

It is inspired by the suggestion that the hippocampus is better paired with a 
generative model than a replay buffer, because it is more than a simple 
experience replay buffer.

Shin H., Continual Learning with Deep Generative Replay

https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
77



• If it is possible to store data from previous tasks then we may use stored 
data as “exemplars” during execution. 
• iCaRL, incremental Classifier and Representation Learning uses a neural 

network for feature extraction and performs classification based on a 
nearest-class-mean rule in that feature space, whereby the class means 
are calculated from the stored data. 

• To protect the feature extractor network from becoming unsuitable for 
previously learned tasks, iCaRL also replays the stored data—as well as the 
current task inputs with a special form of distillation—during training of 
the feature extractor. 

https://arxiv.org/abs/1611.07725
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Korycki and Krawczyk proposed Reactive Subspace Buffer (RSB).

Majority of the experience replay methods do not control validity of stored 

examples.

Further improve adaptation by making memory buffers reactive to concept drifts.

Reactive Subspace Buffer:

● Tracking the current dominant classes in a given cluster.

● Switching labels between clusters.

● Splitting them.

● Sampling from the replay buffer based on purity.

● Retaining stable concepts.

79

Ł. Korycki, B. Krawczyk: Class-Incremental Experience Replay for Continual Learning Under Concept Drift. CVPR 

Workshops: 3649-3658 (2021)



Class incremental learning for contradictory attack detection

A model that processes this type of traffic often uses time windows taking 
consecutive packets, which are then encoded into an array. 

To apply given perturbations to the sample, network packets are prepared to 
achieve a similar effect to applying noise to an image. Altering network packets 
to fool the system is a common practice. 

It involves altering the packets sent so that the security system (usually a firewall 
or other intrusion detection and prevention system) does not notice the 
suspicious traffic. 

Changing packets most often requires the attacker to develop a new network 
packet or intercept an existing packet and edit the information in it

Kozal J. et al. Defending Network IDS against Adversarial Examples with Continual Learning  IEEE ICDM 2023
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Used generators: Hping, Ostinato,Scapy

Coding using USTC-TFC2016 Wei Wang et al. Malware traffic classification using convolutional 

neural network for representation learning (2017) https://ieeexplore.ieee.org/document/7899588

81

https://ieeexplore.ieee.org/document/7899588


https://github.com/Rovlet/Adversarial-Incremental-Learning

82

We confirmed that continual 

learning, in principle, could be 

used in the computer security 

domain to react to new attacks 

that appear over time and adapt 

existing models.



We study the potential applications of recent findings from the field of weight 

interpolation in continual learning. 

Based on recent weight interpolation techniques, we propose a remarkably simple 

continual learning algorithm that performs weight interpolation after each task to 

mitigate forgetting. 

We base our approach on widely used experience replay methods.

Kozal J. et al. Continual Learning with Weight Interpolation, CVPR 2024 (submitted)
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Challenges and conclusion
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Evaluation of lifelong ML methods (metrics, protocols)

85

What we would like to measure?

Performance on current experience

Performance on past experiences

Performance on future experiences

Resource consumption

Model size growth

Execution time

…..
Lesort et al.,  Continual learning for robotics: Definition, framework, learning strategies, opportunities and 

challenges, Information Fusion, 2020

What experimental protocol 

should be used?

Is the one protocol that fits all 

possible scenarios?



Evaluation of lifelong ML methods (metrics, protocols)
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It provides the visual means to identify how approaches are practically reported and 

how works can simultaneously be contextualized in the broader literature landscape. 

It provides an intuitive chart to understand the priorities of individual systems, 

where they resemble each other, and what elements are missing for a fair 

comparison.



New task definition – the current methods assume stationary model for 
each previously trained task

Lack of methods considered data updating or deleting

Taxonomy&formalism

CL is advanced conceptually, while there are quite few practical applications
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What do we really expect and what can convince us to use CL?

Thrustworthy Continual Learning

• explainable, 

• unbiased, 

• reproducible, 

• sustainable
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